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growth modes and big history  |  1

Chapter 1

Past developments  
and present capabilities

We begin by looking back. History, at the largest scale, seems 
to exhibit a sequence of distinct growth modes, each much 
more rapid than its predecessor. This pattern has been taken 

to suggest that another (even faster) growth mode might be possible. 
However, we do not place much weight on this observation—this is not 
a book about “technological acceleration” or “exponential growth” or 
the miscellaneous notions sometimes gathered under the rubric of “the 
singularity.” Next, we review the history of artificial intelligence. We 
then survey the field’s current capabilities. Finally, we glance at some 
recent expert opinion surveys, and contemplate our ignorance about 
the timeline of future advances.

Growth modes and big history

A mere few million years ago our ancestors were still swinging from the 
branches in the African canopy. On a geological or even evolutionary 
timescale, the rise of Homo sapiens from our last common ancestor with 
the great apes happened swiftly. We developed upright posture, oppos-
able thumbs, and—crucially—some relatively minor changes in brain size 
and neurological organization that led to a great leap in cognitive ability. 
As a consequence, humans can think abstractly, communicate complex 
thoughts, and culturally accumulate information over the generations far 
better than any other species on the planet.
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2  |  P ast developments and present capabilities

These capabilities let humans develop increasingly efficient product-
ive technologies, making it possible for our ancestors to migrate far away 
from the rainforest and the savanna. Especially after the adoption of agri-
culture, population densities rose along with the total size of the human 
population. More people meant more ideas; greater densities meant that 
ideas could spread more readily and that some individuals could devote 
themselves to developing specialized skills. These developments increased 
the rate of growth of economic productivity and technological capacity. 
Later developments, related to the Industrial Revolution, brought about a 
second, comparable step change in the rate of growth.

Such changes in the rate of growth have important consequences. A 
few hundred thousand years ago, in early human (or hominid) prehis-
tory, growth was so slow that it took on the order of one million years for 
human productive capacity to increase sufficiently to sustain an addition-
al one million individuals living at subsistence level. By 5000 bc, following 
the Agricultural Revolution, the rate of growth had increased to the point 
where the same amount of growth took just two centuries. Today, follow-
ing the Industrial Revolution, the world economy grows on average by 
that amount every ninety minutes.1

Even the present rate of growth will produce impressive results if main-
tained for a moderately long time. If the world economy continues to 
grow at the same pace as it has over the past fifty years, then the world will 
be some 4.8 times richer by 2050 and about 34 times richer by 2100 than 
it is today.2

Yet the prospect of continuing on a steady exponential growth path 
pales in comparison to what would happen if the world were to experi-
ence another step change in the rate of growth comparable in magnitude 
to those associated with the Agricultural Revolution and the Industrial 
Revolution. The economist Robin Hanson estimates, based on historical 
economic and population data, a characteristic world economy doubling 
time for Pleistocene hunter–gatherer society of 224,000 years; for farm-
ing society, 909 years; and for industrial society, 6.3 years.3 (In Hanson’s 
model, the present epoch is a mixture of the farming and the industrial 
growth modes—the world economy as a whole is not yet growing at the 
6.3-year doubling rate.) If another such transition to a different growth 
mode were to occur, and it were of similar magnitude to the previous 
two, it would result in a new growth regime in which the world economy 
would double in size about every two weeks.
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growth modes and big history  |  3

Such a growth rate seems fantastic by current lights. Observers in 
earlier epochs might have found it equally preposterous to suppose that 
the world economy would one day be doubling several times within a 
single lifespan. Yet that is the extraordinary condition we now take to be 
ordinary.

The idea of a coming technological singularity has by now been widely 
popularized, starting with Vernor Vinge’s seminal essay and continuing 
with the writings of Ray Kurzweil and others.4 The term “singularity,” 
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Figure 1  Long-term history of world GDP. Plotted on a linear scale, the history of the 
world economy looks like a flat line hugging the x-axis, until it suddenly spikes vertically 
upward. (a) Even when we zoom in on the most recent 10,000 years, the pattern remains 
essentially one of a single 90° angle. (b) Only within the past 100 years or so does the curve 
lift perceptibly above the zero-level. (The different lines in the plot correspond to different 
data sets, which yield slightly different estimates.5)
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4  |  P ast developments and present capabilities

however, has been used confusedly in many disparate senses and has 
accreted an unholy (yet almost millenarian) aura of techno-utopian con-
notations.6 Since most of these meanings and connotations are irrelevant 
to our argument, we can gain clarity by dispensing with the “singularity” 
word in favor of more precise terminology.

The singularity-related idea that interests us here is the possibility of 
an intelligence explosion, particularly the prospect of machine superintel-
ligence. There may be those who are persuaded by growth diagrams like 
the ones in Figure 1 that another drastic change in growth mode is in the 
cards, comparable to the Agricultural or Industrial Revolution. These folk 
may then reflect that it is hard to conceive of a scenario in which the world 
economy’s doubling time shortens to mere weeks that does not involve the 
creation of minds that are much faster and more efficient than the familiar 
biological kind. However, the case for taking seriously the prospect of a 
machine intelligence revolution need not rely on curve-fitting exercises 
or extrapolations from past economic growth. As we shall see, there are 
stronger reasons for taking heed.

Great expectations

Machines matching humans in general intelligence—that is, possessing 
common sense and an effective ability to learn, reason, and plan to meet 
complex information-processing challenges across a wide range of nat-
ural and abstract domains—have been expected since the invention of 
computers in the 1940s. At that time, the advent of such machines was 
often placed some twenty years into the future.7 Since then, the expected 
arrival date has been receding at a rate of one year per year; so that today, 
futurists who concern themselves with the possibility of artificial general 
intelligence still often believe that intelligent machines are a couple of 
decades away.8

Two decades is a sweet spot for prognosticators of radical change: near 
enough to be attention-grabbing and relevant, yet far enough to make it 
possible to suppose that a string of breakthroughs, currently only vaguely 
imaginable, might by then have occurred. Contrast this with shorter time-
scales: most technologies that will have a big impact on the world in five 
or ten years from now are already in limited use, while technologies that 
will reshape the world in less than fifteen years probably exist as labora-
tory prototypes. Twenty years may also be close to the typical duration 
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great expectations  |  5

remaining of a forecaster’s career, bounding the reputational risk of a bold 
prediction.

From the fact that some individuals have overpredicted artificial intel-
ligence in the past, however, it does not follow that AI is impossible or 
will never be developed.9 The main reason why progress has been slower 
than expected is that the technical difficulties of constructing intelligent 
machines have proved greater than the pioneers foresaw. But this leaves 
open just how great those difficulties are and how far we now are from 
overcoming them. Sometimes a problem that initially looks hopelessly 
complicated turns out to have a surprisingly simple solution (though the 
reverse is probably more common).

In the next chapter, we will look at different paths that may lead to 
human-level machine intelligence. But let us note at the outset that how-
ever many stops there are between here and human-level machine intel-
ligence, the latter is not the final destination. The next stop, just a short 
distance farther along the tracks, is superhuman-level machine intelli-
gence. The train might not pause or even decelerate at Humanville Sta-
tion. It is likely to swoosh right by.

The mathematician I. J. Good, who had served as chief statistician in 
Alan Turing’s code-breaking team in World War II, might have been the 
first to enunciate the essential aspects of this scenario. In an oft-quoted 
passage from 1965, he wrote:

Let an ultraintelligent machine be defined as a machine that can far surpass all the 
intellectual activities of any man however clever. Since the design of machines is one 
of these intellectual activities, an ultraintelligent machine could design even better 
machines; there would then unquestionably be an “intelligence explosion,” and the 
intelligence of man would be left far behind. Thus the first ultraintelligent machine 
is the last invention that man need ever make, provided that the machine is docile 
enough to tell us how to keep it under control.10

It may seem obvious now that major existential risks would be associated 
with such an intelligence explosion, and that the prospect should therefore 
be examined with the utmost seriousness even if it were known (which it 
is not) to have but a moderately small probability of coming to pass. The 
pioneers of artificial intelligence, however, notwithstanding their belief in 
the imminence of human-level AI, mostly did not contemplate the possi-
bility of greater-than-human AI. It is as though their speculation muscle 
had so exhausted itself in conceiving the radical possibility of machines 
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6  |  P ast developments and present capabilities

reaching human intelligence that it could not grasp the corollary—that 
machines would subsequently become superintelligent.

The AI pioneers for the most part did not countenance the possibil-
ity that their enterprise might involve risk.11 They gave no lip service—let 
alone serious thought—to any safety concern or ethical qualm related to 
the creation of artificial minds and potential computer overlords: a lacuna 
that astonishes even against the background of the era’s not-so-impressive 
standards of critical technology assessment.12 We must hope that by the 
time the enterprise eventually does become feasible, we will have gained 
not only the technological proficiency to set off an intelligence explosion 
but also the higher level of mastery that may be necessary to make the 
detonation survivable.

But before we turn to what lies ahead, it will be useful to take a quick 
glance at the history of machine intelligence to date.

Seasons of hope and despair

In the summer of 1956 at Dartmouth College, ten scientists sharing an 
interest in neural nets, automata theory, and the study of intelligence con-
vened for a six-week workshop. This Dartmouth Summer Project is often 
regarded as the cockcrow of artificial intelligence as a field of research. 
Many of the participants would later be recognized as founding figures. The 
optimistic outlook among the delegates is reflected in the proposal submit-
ted to the Rockefeller Foundation, which provided funding for the event:

We propose that a 2 month, 10 man study of artificial intelligence be carried out. . . . 
The study is to proceed on the basis of the conjecture that every aspect of learn-
ing or any other feature of intelligence can in principle be so precisely described 
that a machine can be made to simulate it. An attempt will be made to find how 
to make machines that use language, form abstractions and concepts, solve kinds 
of problems now reserved for humans, and improve themselves. We think that a 
significant advance can be made in one or more of these problems if a carefully 
selected group of scientists work on it together for a summer.

In the six decades since this brash beginning, the field of artificial intelli-
gence has been through periods of hype and high expectations alternating 
with periods of setback and disappointment.

The first period of excitement, which began with the Dartmouth meet-
ing, was later described by John McCarthy (the event’s main organizer) as 
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seasons of hope and despair  |  7

the “Look, Ma, no hands!” era. During these early days, researchers built 
systems designed to refute claims of the form “No machine could ever do 
X!” Such skeptical claims were common at the time. To counter them, the 
AI researchers created small systems that achieved X in a “microworld” 
(a well-defined, limited domain that enabled a pared-down version of the 
performance to be demonstrated), thus providing a proof of concept and 
showing that X could, in principle, be done by machine. One such early 
system, the Logic Theorist, was able to prove most of the theorems in the 
second chapter of Whitehead and Russell’s Principia Mathematica, and 
even came up with one proof that was much more elegant than the origin-
al, thereby debunking the notion that machines could “only think numer-
ically” and showing that machines were also able to do deduction and to 
invent logical proofs.13 A follow-up program, the General Problem Solver, 
could in principle solve a wide range of formally specified problems.14 
Programs that could solve calculus problems typical of first-year college 
courses, visual analogy problems of the type that appear in some IQ tests, 
and simple verbal algebra problems were also written.15 The Shakey robot 
(so named because of its tendency to tremble during operation) demon-
strated how logical reasoning could be integrated with perception and 
used to plan and control physical activity.16 The ELIZA program showed 
how a computer could impersonate a Rogerian psychotherapist.17 In the  
mid-1970s, the program SHRDLU showed how a simulated robotic  
arm in a simulated world of geometric blocks could follow instructions 
and answer questions in English that were typed in by a user.18 In later 
decades, systems would be created that demonstrated that machines 
could compose music in the style of various classical composers, outper-
form junior doctors in certain clinical diagnostic tasks, drive cars autono-
mously, and make patentable inventions.19 There has even been an AI that 
cracked original jokes.20 (Not that its level of humor was high—“What do 
you get when you cross an optic with a mental object? An eye-dea”—but 
children reportedly found its puns consistently entertaining.)

The methods that produced successes in the early demonstration sys-
tems often proved difficult to extend to a wider variety of problems or 
to harder problem instances. One reason for this is the “combinatorial 
explosion” of possibilities that must be explored by methods that rely 
on something like exhaustive search. Such methods work well for sim-
ple instances of a problem, but fail when things get a bit more compli-
cated. For instance, to prove a theorem that has a 5-line long proof in a  
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8  |  P ast developments and present capabilities

deduction system with one inference rule and 5 axioms, one could simply 
enumerate the 3,125 possible combinations and check each one to see if it 
delivers the intended conclusion. Exhaustive search would also work for 
6- and 7-line proofs. But as the task becomes more difficult, the method 
of exhaustive search soon runs into trouble. Proving a theorem with a 
50-line proof does not take ten times longer than proving a theorem that 
has a 5-line proof: rather, if one uses exhaustive search, it requires comb-
ing through 550 ≈ 8.9 × 1034 possible sequences—which is computationally 
infeasible even with the fastest supercomputers.

To overcome the combinatorial explosion, one needs algorithms 
that exploit structure in the target domain and take advantage of prior 
knowledge by using heuristic search, planning, and flexible abstract 
representations—capabilities that were poorly developed in the early AI 
systems. The performance of these early systems also suffered because of 
poor methods for handling uncertainty, reliance on brittle and unground-
ed symbolic representations, data scarcity, and severe hardware limita-
tions on memory capacity and processor speed. By the mid-1970s, there 
was a growing awareness of these problems. The realization that many AI 
projects could never make good on their initial promises led to the onset 
of the first “AI winter”: a period of retrenchment, during which funding 
decreased and skepticism increased, and AI fell out of fashion.

A new springtime arrived in the early 1980s, when Japan launched 
its Fifth-Generation Computer Systems Project, a well-funded public–
private partnership that aimed to leapfrog the state of the art by devel-
oping a massively parallel computing architecture that would serve as a 
platform for artificial intelligence. This occurred at peak fascination with 
the Japanese “post-war economic miracle,” a period when Western gov-
ernment and business leaders anxiously sought to divine the formula 
behind Japan’s economic success in hope of replicating the magic at home. 
When Japan decided to invest big in AI, several other countries followed 
suit.

The ensuing years saw a great proliferation of expert systems. Designed 
as support tools for decision makers, expert systems were rule-based 
programs that made simple inferences from a knowledge base of facts, 
which had been elicited from human domain experts and painstakingly 
hand-coded in a formal language. Hundreds of these expert systems were 
built. However, the smaller systems provided little benefit, and the larger 
ones proved expensive to develop, validate, and keep updated, and were 
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seasons of hope and despair  |  9

generally cumbersome to use. It was impractical to acquire a standalone 
computer just for the sake of running one program. By the late 1980s, this 
growth season, too, had run its course.

The Fifth-Generation Project failed to meet its objectives, as did 
its counterparts in the United States and Europe. A second AI winter 
descended. At this point, a critic could justifiably bemoan “the history of 
artificial intelligence research to date, consisting always of very limited 
success in particular areas, followed immediately by failure to reach the 
broader goals at which these initial successes seem at first to hint.”21 Pri-
vate investors began to shun any venture carrying the brand of “artificial 
intelligence.” Even among academics and their funders, “AI” became an 
unwanted epithet.22

Technical work continued apace, however, and by the 1990s, the second 
AI winter gradually thawed. Optimism was rekindled by the introduction 
of new techniques, which seemed to offer alternatives to the traditional 
logicist paradigm (often referred to as “Good Old-Fashioned Artificial 
Intelligence,” or “GOFAI” for short), which had focused on high-level 
symbol manipulation and which had reached its apogee in the expert 
systems of the 1980s. The newly popular techniques, which included 
neural networks and genetic algorithms, promised to overcome some of 
the shortcomings of the GOFAI approach, in particular the “brittleness” 
that characterized classical AI programs (which typically produced com-
plete nonsense if the programmers made even a single slightly erroneous 
assumption). The new techniques boasted a more organic performance. 
For example, neural networks exhibited the property of “graceful degra-
dation”: a small amount of damage to a neural network typically resulted 
in a small degradation of its performance, rather than a total crash. Even 
more importantly, neural networks could learn from experience, finding 
natural ways of generalizing from examples and finding hidden statistical 
patterns in their input.23 This made the nets good at pattern recognition 
and classification problems. For example, by training a neural network 
on a data set of sonar signals, it could be taught to distinguish the acous-
tic profiles of submarines, mines, and sea life with better accuracy than 
human experts—and this could be done without anybody first having to 
figure out in advance exactly how the categories were to be defined or how 
different features were to be weighted.

While simple neural network models had been known since the 
late 1950s, the field enjoyed a renaissance after the introduction of the 
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10  |  P ast developments and present capabilities

backpropagation algorithm, which made it possible to train multi-layered 
neural networks.24 Such multilayered networks, which have one or more 
intermediary (“hidden”) layers of neurons between the input and out-
put layers, can learn a much wider range of functions than their simpler 
predecessors.25 Combined with the increasingly powerful computers that 
were becoming available, these algorithmic improvements enabled engin-
eers to build neural networks that were good enough to be practically use-
ful in many applications.

The brain-like qualities of neural networks contrasted favorably with 
the rigidly logic-chopping but brittle performance of traditional rule-
based GOFAI systems—enough so to inspire a new “-ism,” connectionism, 
which emphasized the importance of massively parallel sub-symbolic 
processing. More than 150,000 academic papers have since been pub-
lished on artificial neural networks, and they continue to be an important 
approach in machine learning.

Evolution-based methods, such as genetic algorithms and genetic 
programming, constitute another approach whose emergence helped 
end the second AI winter. It made perhaps a smaller academic impact 
than neural nets but was widely popularized. In evolutionary models, a 
population of candidate solutions (which can be data structures or pro-
grams) is maintained, and new candidate solutions are generated ran-
domly by mutating or recombining variants in the existing population. 
Periodically, the population is pruned by applying a selection criter-
ion (a fitness function) that allows only the better candidates to sur-
vive into the next generation. Iterated over thousands of generations, 
the average quality of the solutions in the candidate pool gradually 
increases. When it works, this kind of algorithm can produce effi-
cient solutions to a very wide range of problems—solutions that may 
be strikingly novel and unintuitive, often looking more like natural 
structures than anything that a human engineer would design. And in 
principle, this can happen without much need for human input beyond 
the initial specification of the fitness function, which is often very sim-
ple. In practice, however, getting evolutionary methods to work well 
requires skill and ingenuity, particularly in devising a good representa-
tional format. Without an efficient way to encode candidate solutions 
(a genetic language that matches latent structure in the target domain), 
evolutionary search tends to meander endlessly in a vast search space 
or get stuck at a local optimum. Even if a good representational format 
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seasons of hope and despair  |  11

is found, evolution is computationally demanding and is often defeated 
by the combinatorial explosion.

Neural networks and genetic algorithms are examples of methods 
that stimulated excitement in the 1990s by appearing to offer alterna-
tives to the stagnating GOFAI paradigm. But the intention here is not to 
sing the praises of these two methods or to elevate them above the many 
other techniques in machine learning. In fact, one of the major theoret-
ical developments of the past twenty years has been a clearer realization 
of how superficially disparate techniques can be understood as special 
cases within a common mathematical framework. For example, many 
types of artificial neural network can be viewed as classifiers that per-
form a particular kind of statistical calculation (maximum likelihood 
estimation).26 This perspective allows neural nets to be compared with 
a larger class of algorithms for learning classifiers from examples—
“decision trees,” “logistic regression models,” “support vector machines,” 
“naive Bayes,” “k-nearest-neighbors regression,” among others.27 In a 
similar manner, genetic algorithms can be viewed as performing sto-
chastic hill-climbing, which is again a subset of a wider class of algo-
rithms for optimization. Each of these algorithms for building classifiers 
or for searching a solution space has its own profile of strengths and 
weaknesses which can be studied mathematically. Algorithms differ in 
their processor time and memory space requirements, which inductive 
biases they presuppose, the ease with which externally produced con-
tent can be incorporated, and how transparent their inner workings are 
to a human analyst.

Behind the razzle-dazzle of machine learning and creative problem-
solving thus lies a set of mathematically well-specified tradeoffs. The 
ideal is that of the perfect Bayesian agent, one that makes probabilistically 
optimal use of available information. This ideal is unattainable because 
it is too computationally demanding to be implemented in any physical 
computer (see Box 1). Accordingly, one can view artificial intelligence as a 
quest to find shortcuts: ways of tractably approximating the Bayesian ideal 
by sacrificing some optimality or generality while preserving enough to 
get high performance in the actual domains of interest.

A reflection of this picture can be seen in the work done over the past 
couple of decades on probabilistic graphical models, such as Bayesian net-
works. Bayesian networks provide a concise way of representing probabil-
istic and conditional independence relations that hold in some particular 
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12  |  P ast developments and present capabilities

Box 1 An optimal Bayesian agent

An ideal Bayesian agent starts out with a “prior probability distribution,” a 
function that assigns probabilities to each “possible world” (i.e. to each max-
imally specific way the world could turn out to be).28 This prior incorporates an 
inductive bias such that simpler possible worlds are assigned higher probabil-
ities. (One way to formally define the simplicity of a possible world is in terms 
of its “Kolmogorov complexity,” a measure based on the length of the shortest 
computer program that generates a complete description of the world.29) The 
prior also incorporates any background knowledge that the programmers 
wish to give to the agent.

As the agent receives new information from its sensors, it updates its prob-
ability distribution by conditionalizing the distribution on the new information 
according to Bayes’ theorem.30 Conditionalization is the mathematical oper-
ation that sets the new probability of those worlds that are inconsistent with 
the information received to zero and renormalizes the probability distribution 
over the remaining possible worlds. The result is a “posterior probability dis-
tribution” (which the agent may use as its new prior in the next time step). As 
the agent makes observations, its probability mass thus gets concentrated on 
the shrinking set of possible worlds that remain consistent with the evidence; 
and among these possible worlds, simpler ones always have more probability.

Metaphorically, we can think of a probability as sand on a large sheet of 
paper. The paper is partitioned into areas of various sizes, each area corres-
ponding to one possible world, with larger areas corresponding to simpler 
possible worlds. Imagine also a layer of sand of even thickness spread across 
the entire sheet: this is our prior probability distribution. Whenever an obser-
vation is made that rules out some possible worlds, we remove the sand from 
the corresponding areas of the paper and redistribute it evenly over the areas 
that remain in play. Thus, the total amount of sand on the sheet never changes, 
it just gets concentrated into fewer areas as observational evidence accumu-
lates. This is a picture of learning in its purest form. (To calculate the probability 
of a hypothesis, we simply measure the amount of sand in all the areas that 
correspond to the possible worlds in which the hypothesis is true.)

So far, we have defined a learning rule. To get an agent, we also need a 
decision rule. To this end, we endow the agent with a “utility function” which 
assigns a number to each possible world. The number represents the desir-
ability of that world according to the agent’s basic preferences. Now, at each 
time step, the agent selects the action with the highest expected utility.31 (To 
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seasons of hope and despair  |  13

domain. (Exploiting such independence relations is essential for over-
coming the combinatorial explosion, which is as much of a problem for 
probabilistic inference as it is for logical deduction.) They also provide 
important insight into the concept of causality.34

One advantage of relating learning problems from specific domains 
to the general problem of Bayesian inference is that new algorithms 
that make Bayesian inference more efficient will then yield immediate 
improvements across many different areas. Advances in Monte Carlo 
approximation techniques, for example, are directly applied in computer 

Box 1   Continued

find the action with the highest expected utility, the agent could list all possible 
actions. It could then compute the conditional probability distribution given 
the action—the probability distribution that would result from conditionalizing 
its current probability distribution on the observation that the action had just 
been taken. Finally, it could calculate the expected value of the action as the 
sum of the value of each possible world multiplied by the conditional probabil-
ity of that world given the action.32)

The learning rule and the decision rule together define an “optimality 
notion” for an agent. (Essentially the same optimality notion has been broadly 
used in artificial intelligence, epistemology, philosophy of science, economics, 
and statistics.33) In reality, it is impossible to build such an agent because it is 
computationally intractable to perform the requisite calculations. Any attempt 
to do so succumbs to a combinatorial explosion just like the one described in 
our discussion of GOFAI. To see why this is so, consider one tiny subset of all 
possible worlds: those that consist of a single computer monitor floating in 
an endless vacuum. The monitor has 1,  000 × 1,  000 pixels, each of which is 
perpetually either on or off. Even this subset of possible worlds is enormously 
large: the 2(1,000 × 1,000) possible monitor states outnumber all the computations 
expected ever to take place in the observable universe. Thus, we could not 
even enumerate all the possible worlds in this tiny subset of all possible worlds, 
let alone perform more elaborate computations on each of them individually.

Optimality notions can be of theoretical interest even if they are physically 
unrealizable. They give us a standard by which to judge heuristic approxima-
tions, and sometimes we can reason about what an optimal agent would do in 
some special case. We will encounter some alternative optimality notions for 
artificial agents in Chapter 12.
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14  |  P ast developments and present capabilities

vision, robotics, and computational genetics. Another advantage is that it 
lets researchers from different disciplines more easily pool their findings. 
Graphical models and Bayesian statistics have become a shared focus of 
research in many fields, including machine learning, statistical physics, 
bioinformatics, combinatorial optimization, and communication the-
ory.35 A fair amount of the recent progress in machine learning has result-
ed from incorporating formal results originally derived in other academic 
fields. (Machine learning applications have also benefited enormously 
from faster computers and greater availability of large data sets.)

State of the art

Artificial intelligence already outperforms human intelligence in many 
domains. Table 1 surveys the state of game-playing computers, showing 
that AIs now beat human champions in a wide range of games.36

These achievements might not seem impressive today. But this is 
because our standards for what is impressive keep adapting to the advances 
being made. Expert chess playing, for example, was once thought to epit-
omize human intellection. In the view of several experts in the late 1950s:  
“If one could devise a successful chess machine, one would seem to have 
penetrated to the core of human intellectual endeavor.”37 This no longer 
seems so. One sympathizes with John McCarthy, who lamented: “As soon 
as it works, no one calls it AI anymore.”38

There is an important sense, however, in which chess-playing AI turned 
out to be a lesser triumph than many imagined it would be. It was once 
supposed, perhaps not unreasonably, that in order for a computer to 
play chess at grandmaster level, it would have to be endowed with a high 
degree of general intelligence.39 One might have thought, for example, 
that great chess playing requires being able to learn abstract concepts, 
think cleverly about strategy, compose flexible plans, make a wide range 
of ingenious logical deductions, and maybe even model one’s opponent’s 
thinking. Not so. It turned out to be possible to build a perfectly fine chess 
engine around a special-purpose algorithm.40 When implemented on the 
fast processors that became available towards the end of the twentieth 
century, it produces very strong play. But an AI built like that is narrow. It 
plays chess; it can do no other.41

In other domains, solutions have turned out to be more complicated 
than initially expected, and progress slower. The computer scientist 
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state of the art  |  15

Table 1  Game-playing AI

Checkers Superhuman Arthur Samuel’s checkers program, originally 
written in 1952 and later improved (the 1955 
version incorporating machine learning), becomes 
the first program to learn to play a game 
better than its creator.42 In 1994, the program 
CHINOOK beats the reigning human champion, 
marking the first time a program wins an official 
world championship in a game of skill. In 2002, 
Jonathan Schaeffer and his team “solve” checkers, 
i.e. produce a program that always makes the 
best possible move (combining alpha-beta search 
with a database of 39 trillion endgame positions). 
Perfect play by both sides leads to a draw.43

Backgammon Superhuman 1979: The backgammon program BKG by Hans 
Berliner defeats the world champion—the first 
computer program to defeat (in an exhibition 
match) a world champion in any game—
though Berliner later attributes the win to luck 
with the dice rolls.44

1992: The backgammon program TD-Gammon 
by Gerry Tesauro reaches championship-level 
ability, using temporal difference learning (a 
form of reinforcement learning) and repeated 
plays against itself to improve.45

In the years since, backgammon programs have 
far surpassed the best human players.46

Traveller  
TCS

Superhuman in 
collaboration 
with human47

In both 1981 and 1982, Douglas Lenat’s 
program Eurisko wins the US championship 
in Traveller TCS (a futuristic naval war 
game), prompting rule changes to block its 
unorthodox strategies.48 Eurisko had heuristics 
for designing its fleet, and it also had heuristics 
for modifying its heuristics.

Othello Superhuman 1997: The program Logistello wins every game 
in a six-game match against world champion 
Takeshi Murakami.49

Chess Superhuman 1997: Deep Blue beats the world chess champion, 
Garry Kasparov. Kasparov claims to have seen 
glimpses of true intelligence and creativity in some 
of the computer’s moves.50 Since then, chess 
engines have continued to improve.51

continued
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16  |  P ast developments and present capabilities

Crosswords Expert level 1999: The crossword-solving program Proverb 
outperforms the average crossword-solver.52

2012: The program Dr. Fill, created by Matt 
Ginsberg, scores in the top quartile among the 
otherwise human contestants in the American 
Crossword Puzzle Tournament. (Dr. Fill’s 
performance is uneven. It completes perfectly 
the puzzle rated most difficult by humans, yet 
is stumped by a couple of nonstandard puzzles 
that involved spelling backwards or writing 
answers diagonally.)53

Scrabble Superhuman As of 2002, Scrabble-playing software 
surpasses the best human players.54

Bridge Equal to the best By 2005, contract bridge playing software reaches 
parity with the best human bridge players.55

Jeopardy! Superhuman 2010: IBM’s Watson defeats the two all-
time-greatest human Jeopardy! champions, 
Ken Jennings and Brad Rutter.56 Jeopardy! is 
a televised game show with trivia questions 
about history, literature, sports, geography, pop 
culture, science, and other topics. Questions 
are presented in the form of clues, and often 
involve wordplay.

Poker Varied Computer poker players remain slightly below 
the best humans for full-ring Texas hold ’em 
but perform at a superhuman level in some 
poker variants.57

FreeCell Superhuman Heuristics evolved using genetic algorithms 
produce a solver for the solitaire game 
FreeCell (which in its generalized form is 
NP-complete) that is able to beat high-ranking 
human players.58

Go Very strong 
amateur level

As of 2012, the Zen series of Go-playing 
programs has reached rank 6 dan in fast 
games (the level of a very strong amateur 
player), using Monte Carlo tree search and 
machine learning techniques.59 Go-playing 
programs have been improving at a rate of 
about 1 dan/year in recent years. If this rate of 
improvement continues, they might beat the 
human world champion in about a decade.

Table 1  Continued
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state of the art  |  17

Donald Knuth was struck that “AI has by now succeeded in doing essen-
tially everything that requires ‘thinking’ but has failed to do most of what 
people and animals do ‘without thinking’—that, somehow, is much hard-
er!”60 Analyzing visual scenes, recognizing objects, or controlling a robot’s 
behavior as it interacts with a natural environment has proved challeng-
ing. Nevertheless, a fair amount of progress has been made and continues 
to be made, aided by steady improvements in hardware.

Common sense and natural language understanding have also turned 
out to be difficult. It is now often thought that achieving a fully human-
level performance on these tasks is an “AI-complete” problem, meaning 
that the difficulty of solving these problems is essentially equivalent to 
the difficulty of building generally human-level intelligent machines.61 In 
other words, if somebody were to succeed in creating an AI that could 
understand natural language as well as a human adult, they would in all 
likelihood also either already have succeeded in creating an AI that could 
do everything else that human intelligence can do, or they would be but a 
very short step from such a general capability.62

Chess-playing expertise turned out to be achievable by means of a 
surprisingly simple algorithm. It is tempting to speculate that other  
capabilities—such as general reasoning ability, or some key ability 
involved in programming—might likewise be achievable through some 
surprisingly simple algorithm. The fact that the best performance at one 
time is attained through a complicated mechanism does not mean that no 
simple mechanism could do the job as well or better. It might simply be 
that nobody has yet found the simpler alternative. The Ptolemaic system 
(with the Earth in the center, orbited by the Sun, the Moon, planets, and 
stars) represented the state of the art in astronomy for over a thousand 
years, and its predictive accuracy was improved over the centuries by pro-
gressively complicating the model: adding epicycles upon epicycles to the 
postulated celestial motions. Then the entire system was overthrown by 
the heliocentric theory of Copernicus, which was simpler and—though 
only after further elaboration by Kepler—more predictively accurate.63

Artificial intelligence methods are now used in more areas than it 
would make sense to review here, but mentioning a sampling of them will 
give an idea of the breadth of applications. Aside from the game AIs listed 
in Table 1, there are hearing aids with algorithms that filter out ambient 
noise; route-finders that display maps and offer navigation advice to driv-
ers; recommender systems that suggest books and music albums based 
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18  |  P ast developments and present capabilities

on a user’s previous purchases and ratings; and medical decision support 
systems that help doctors diagnose breast cancer, recommend treatment 
plans, and aid in the interpretation of electrocardiograms. There are 
robotic pets and cleaning robots, lawn-mowing robots, rescue robots, sur-
gical robots, and over a million industrial robots.64 The world population 
of robots exceeds 10 million.65

Modern speech recognition, based on statistical techniques such as hid-
den Markov models, has become sufficiently accurate for practical use (some 
fragments of this book were drafted with the help of a speech recognition 
program). Personal digital assistants, such as Apple’s Siri, respond to spoken 
commands and can answer simple questions and execute commands. Optic-
al character recognition of handwritten and typewritten text is routinely 
used in applications such as mail sorting and digitization of old documents.66

Machine translation remains imperfect but is good enough for many 
applications. Early systems used the GOFAI approach of hand-coded 
grammars that had to be developed by skilled linguists from the ground 
up for each language. Newer systems use statistical machine learning 
techniques that automatically build statistical models from observed 
usage patterns. The machine infers the parameters for these models by 
analyzing bilingual corpora. This approach dispenses with linguists: the 
programmers building these systems need not even speak the languages 
they are working with.67

Face recognition has improved sufficiently in recent years that it is 
now used at automated border crossings in Europe and Australia. The 
US Department of State operates a face recognition system with over 75 
million photographs for visa processing. Surveillance systems employ 
increasingly sophisticated AI and data-mining technologies to analyze 
voice, video, or text, large quantities of which are trawled from the world’s 
electronic communications media and stored in giant data centers.

Theorem-proving and equation-solving are by now so well estab-
lished that they are hardly regarded as AI anymore. Equation solvers are 
included in scientific computing programs such as Mathematica. Formal 
verification methods, including automated theorem provers, are routinely 
used by chip manufacturers to verify the behavior of circuit designs prior 
to production.

The US military and intelligence establishments have been leading the 
way to the large-scale deployment of bomb-disposing robots, surveil-
lance and attack drones, and other unmanned vehicles. These still depend 
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state of the art  |  19

mainly on remote control by human operators, but work is underway to 
extend their autonomous capabilities.

Intelligent scheduling is a major area of success. The DART tool for 
automated logistics planning and scheduling was used in Operation 
Desert Storm in 1991 to such effect that DARPA (the Defense Advanced 
Research Projects Agency in the United States) claims that this single 
application more than paid back their thirty-year investment in AI.68 Air-
line reservation systems use sophisticated scheduling and pricing systems. 
Businesses make wide use of AI techniques in inventory control systems. 
They also use automatic telephone reservation systems and helplines con-
nected to speech recognition software to usher their hapless customers 
through labyrinths of interlocking menu options.

AI technologies underlie many internet services. Software polices the 
world’s email traffic, and despite continual adaptation by spammers to cir-
cumvent the countermeasures being brought against them, Bayesian spam 
filters have largely managed to hold the spam tide at bay. Software using 
AI components is responsible for automatically approving or declining 
credit card transactions, and continuously monitors account activity for 
signs of fraudulent use. Information retrieval systems also make extensive 
use of machine learning. The Google search engine is, arguably, the great-
est AI system that has yet been built.

Now, it must be stressed that the demarcation between artificial intelli-
gence and software in general is not sharp. Some of the applications listed 
above might be viewed more as generic software applications than as AI 
in particular—though this brings us back to McCarthy’s dictum that when 
something works it is no longer called AI. A more relevant distinction for 
our purposes is that between systems that have a narrow range of cogni-
tive capability (whether they be called “AI” or not) and systems that have 
more generally applicable problem-solving capacities. Essentially all the 
systems currently in use are of the former type: narrow. However, many 
of them contain components that might also play a role in future artifi-
cial general intelligence or be of service in its development—components 
such as classifiers, search algorithms, planners, solvers, and representa-
tional frameworks.

One high-stakes and extremely competitive environment in which AI 
systems operate today is the global financial market. Automated stock-
trading systems are widely used by major investing houses. While some of 
these are simply ways of automating the execution of particular buy or sell 
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20  |  P ast developments and present capabilities

orders issued by a human fund manager, others pursue complicated trad-
ing strategies that adapt to changing market conditions. Analytic systems 
use an assortment of data-mining techniques and time series analysis to 
scan for patterns and trends in securities markets or to correlate historical 
price movements with external variables such as keywords in news tick-
ers. Financial news providers sell newsfeeds that are specially formatted 
for use by such AI programs. Other systems specialize in finding arbitrage 
opportunities within or between markets, or in high-frequency trading that 
seeks to profit from minute price movements that occur over the course of 
milliseconds (a timescale at which communication latencies even for speed-
of-light signals in optical fiber cable become significant, making it advanta-
geous to locate computers near the exchange). Algorithmic high-frequency 
traders account for more than half of equity shares traded on US markets.69  
Algorithmic trading has been implicated in the 2010 Flash Crash (see Box 2).

Box 2 The 2010 Flash Crash

By the afternoon of May 6, 2010, US equity markets were already down 
4% on worries about the European debt crisis. At 2:32 p.m., a large seller (a 
mutual fund complex) initiated a sell algorithm to dispose of a large number 
of the E-Mini S&P 500 futures contracts to be sold off at a sell rate linked to a 
measure of minute-to-minute liquidity on the exchange. These contracts were 
bought by algorithmic high-frequency traders, which were programmed to 
quickly eliminate their temporary long positions by selling the contracts on to 
other traders. With demand from fundamental buyers slacking, the algorithmic 
traders started to sell the E-Minis primarily to other algorithmic traders, which 
in turn passed them on to other algorithmic traders, creating a “hot potato” 
effect driving up trading volume—this being interpreted by the sell algorithm 
as an indicator of high liquidity, prompting it to increase the rate at which it was 
putting E-Mini contracts on the market, pushing the downward spiral. At some 
point, the high-frequency traders started withdrawing from the market, drying 
up liquidity while prices continued to fall. At 2:45 p.m., trading on the E-Mini 
was halted by an automatic circuit breaker, the exchange’s stop logic functional-
ity. When trading was restarted, a mere five seconds later, prices stabilized and 
soon began to recover most of the losses. But for a while, at the trough of the 
crisis, a trillion dollars had been wiped off the market, and spillover effects had 
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Box 2   Continued

led to a substantial number of trades in individual securities being executed at 
“absurd” prices, such as one cent or 100,000 dollars. After the market closed 
for the day, representatives of the exchanges met with regulators and decided 
to break all trades that had been executed at prices 60% or more away from 
their pre-crisis levels (deeming such transactions “clearly erroneous” and thus 
subject to post facto cancellation under existing trade rules).70

The retelling here of this episode is a digression because the computer 
programs involved in the Flash Crash were not particularly intelligent or 
sophisticated, and the kind of threat they created is fundamentally different 
from the concerns we shall raise later in this book in relation to the prospect 
of machine superintelligence. Nevertheless, these events illustrate several 
useful lessons. One is the reminder that interactions between individually 
simple components (such as the sell algorithm and the high-frequency algo-
rithmic trading programs) can produce complicated and unexpected effects. 
Systemic risk can build up in a system as new elements are introduced, risks 
that are not obvious until after something goes wrong (and sometimes not 
even then).71

Another lesson is that smart professionals might give an instruction to a 
program based on a sensible-seeming and normally sound assumption (e.g. 
that trading volume is a good measure of market liquidity) and that this 
can produce catastrophic results when the program continues to act on 
the instruction with iron-clad logical consistency even in the unanticipated 
situation where the assumption turns out to be invalid. The algorithm 
just does what it does; and unless it is a very special kind of algorithm, it 
does not care that we clasp our heads and gasp in dumbstruck horror at 
the absurd inappropriateness of its actions. This is a theme that we will 
encounter again.

A third observation in relation to the Flash Crash is that while automa-
tion contributed to the incident, it also contributed to its resolution. The  
pre-programmed stop order logic, which suspended trading when prices 
moved too far out of whack, was set to execute automatically because it had 
been correctly anticipated that the triggering events could happen on a time-
scale too swift for humans to respond. The need for pre-installed and auto-
matically executing safety functionality—as opposed to reliance on runtime 
human supervision—again foreshadows a theme that will be important in our 
discussion of machine superintelligence.72
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Opinions about the future� of machine  
intelligence

Progress on two major fronts—towards a more solid statistical and 
information-theoretic foundation for machine learning on the one hand, 
and towards the practical and commercial success of various problem-
specific or domain-specific applications on the other—has restored to AI 
research some of its lost prestige. There may, however, be a residual cul-
tural effect on the AI community of its earlier history that makes many 
mainstream researchers reluctant to align themselves with over-grand 
ambition. Thus Nils Nilsson, one of the old-timers in the field, complains 
that his present-day colleagues lack the boldness of spirit that propelled 
the pioneers of his own generation:

Concern for “respectability” has had, I think, a stultifying effect on some AI 
researchers. I hear them saying things like, “AI used to be criticized for its flossiness. 
Now that we have made solid progress, let us not risk losing our respectability.” 
One result of this conservatism has been increased concentration on “weak AI”—
the variety devoted to providing aids to human thought—and away from “strong 
AI”—the variety that attempts to mechanize human-level intelligence.73

Nilsson’s sentiment has been echoed by several others of the founders, 
including Marvin Minsky, John McCarthy, and Patrick Winston.74

The last few years have seen a resurgence of interest in AI, which 
might yet spill over into renewed efforts towards artificial general intel-
ligence (what Nilsson calls “strong AI”). In addition to faster hardware, 
a contemporary project would benefit from the great strides that have 
been made in the many subfields of AI, in software engineering more 
generally, and in neighboring fields such as computational neurosci-
ence. One indication of pent-up demand for quality information and 
education is shown in the response to the free online offering of an 
introductory course in artificial intelligence at Stanford University in 
the fall of 2011, organized by Sebastian Thrun and Peter Norvig. Some 
160,000 students from around the world signed up to take it (and 23,000 
completed it).75

Expert opinions about the future of AI vary wildly. There is disagree-
ment about timescales as well as about what forms AI might eventually 
take. Predictions about the future development of artificial intelligence, 
one recent study noted, “are as confident as they are diverse.”76
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Although the contemporary distribution of belief has not been very 
carefully measured, we can get a rough impression from various smaller 
surveys and informal observations. In particular, a series of recent surveys 
have polled members of several relevant expert communities on the ques-
tion of when they expect “human-level machine intelligence” (HLMI) to 
be developed, defined as “one that can carry out most human professions 
at least as well as a typical human.”77 Results are shown in Table 2. The 
combined sample gave the following (median) estimate: 10% probabil-
ity of HLMI by 2022, 50% probability by 2040, and 90% probability by 
2075. (Respondents were asked to premiss their estimates on the assump-
tion that “human scientific activity continues without major negative 
disruption.”)

These numbers should be taken with some grains of salt: sample sizes 
are quite small and not necessarily representative of the general expert 
population. They are, however, in concordance with results from other 
surveys.78

The survey results are also in line with some recently published inter-
views with about two dozen researchers in AI-related fields. For example, 
Nils Nilsson has spent a long and productive career working on prob-
lems in search, planning, knowledge representation, and robotics; he has 
authored textbooks in artificial intelligence; and he recently completed 
the most comprehensive history of the field written to date.79 When asked 
about arrival dates for HLMI, he offered the following opinion:80

10% chance: 2030
50% chance: 2050
90% chance: 2100

Table 2  When will human-level machine intelligence be attained?81

10% 50% 90%

PT-AI 2023 2048 2080

AGI 2022 2040 2065

EETN 2020 2050 2093

TOP100 2024 2050 2070

Combined 2022 2040 2075
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Judging from the published interview transcripts, Professor Nilsson’s 
probability distribution appears to be quite representative of many 
experts in the area—though again it must be emphasized that there is a 
wide spread of opinion: there are practitioners who are substantially more 
boosterish, confidently expecting HLMI in the 2020–40 range, and others 
who are confident either that it will never happen or that it is indefinitely 
far off.82 In addition, some interviewees feel that the notion of a “human 
level” of artificial intelligence is ill-defined or misleading, or are for other 
reasons reluctant to go on record with a quantitative prediction.

My own view is that the median numbers reported in the expert survey 
do not have enough probability mass on later arrival dates. A 10% prob-
ability of HLMI not having been developed by 2075 or even 2100 (after 
conditionalizing on “human scientific activity continuing without major 
negative disruption”) seems too low.

Historically, AI researchers have not had a strong record of being able 
to predict the rate of advances in their own field or the shape that such 
advances would take. On the one hand, some tasks, like chess playing, 
turned out to be achievable by means of surprisingly simple programs; and 
naysayers who claimed that machines would “never” be able to do this or 
that have repeatedly been proven wrong. On the other hand, the more typ-
ical errors among practitioners have been to underestimate the difficulties 
of getting a system to perform robustly on real-world tasks, and to over-
estimate the advantages of their own particular pet project or technique.

The survey also asked two other questions of relevance to our inquiry. 
One inquired of respondents about how much longer they thought it 
would take to reach superintelligence assuming human-level machine is 
first achieved. The results are in Table 3.

Another question inquired what they thought would be the overall 
long-term impact for humanity of achieving human-level machine intelli-
gence. The answers are summarized in Figure 2.

Table 3  How long from human level to superintelligence?

Within 2 years after HLMI Within 30 years after HLMI

TOP100 5% 50%

Combined 10% 75%
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Figure 2  Overall long-term impact of HLMI.83

My own views again differ somewhat from the opinions expressed in 
the survey. I assign a higher probability to superintelligence being cre-
ated relatively soon after human-level machine intelligence. I also have 
a more polarized outlook on the consequences, thinking an extremely 
good or an extremely bad outcome to be somewhat more likely than a 
more balanced outcome. The reasons for this will become clear later in 
the book.

Small sample sizes, selection biases, and—above all—the inherent 
unreliability of the subjective opinions elicited mean that one should not 
read too much into these expert surveys and interviews. They do not let 
us draw any strong conclusion. But they do hint at a weak conclusion. 
They suggest that (at least in lieu of better data or analysis) it may be 
reasonable to believe that human-level machine intelligence has a fair-
ly sizeable chance of being developed by mid-century, and that it has a 
non-trivial chance of being developed considerably sooner or much later; 
that it might perhaps fairly soon thereafter result in superintelligence; and 
that a wide range of outcomes may have a significant chance of occur-
ring, including extremely good outcomes and outcomes that are as bad as 
human extinction.84 At the very least, they suggest that the topic is worth 
a closer look.
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